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An investigation of the structure of jets in rotating systems is presented. The 
fluid is assumed to be homogeneous and the flow laminar and quasi-geostrophic. 
When the rate of rotation is small, the dynamics is shown to be identical to 
that of jets in non-rotating systems, being a balance between inertial terms and 
lateral dissipation. As the rate of rotation increases the Ekman layers become 
important and in the strongly rotating case the friction in the Ekman layers 
dominates lateral dissipation. The jet in a non-rotating system entrains fluid 
at  its edges and the downstream momentum flux is independent of the distance 
downstream. In the strongly rotating case, however, the jet ejects fluid at its 
edges and the downstream momentum flux decreases with downstream distance 
due to dissipation in the Ekman layers. A similarity solution for the general 
case with both types of friction is obtained and the transition from a jet in which 
lateral dissipation dominates to one in which Ekman friction is more important 
is discussed. General features of jets in strongly rotating systems are studied and 
implications for the Gulf Stream are mentioned. 

1. Introduction 
A jet can be defined as a flow in which the width or the cross-stream scale is 

much smaller than the downstream scale. Such flows occur along solid boundaries 
as in the case of wall jets or in the absence of solid boundaries 8s free jets. Free 
jets can be produced in the laboratory by means of an efflux from a narrow slit 
into a fluid placed in a container whose dimensions in the plane normal to the 
slit are large compared to the width of the slit, so that the fluid is essentially 
semi-infinite in the downstream and infinite in the cross-stream direction. The 
structure of free jets in non-rotating systems has been studied by Bickley (1937) 
and Schlichting (1933). The presence of free jets in the atmosphere and oceans 
like the Gulf Stream in the region east of Cape Hatteras, which remains coherent 
over distances which are much larger than its width, points to the importance 
of the investigation of free jets in rotating systems. In  this paper the structure 
of free jets in homogeneous rotating fluids is studied with a view of gaining some 
understanding of this isolated feature of the general circulation. The framework 
used, however, is that of a laboratory experiment so as to ensure precise know- 
ledge of all the parameters involved. The nature of the dissipation is also known 
because the experiments are assumed to be carried out in the laminar rbgime. 

t Present address : Department of Meteorology, Massachusetts Institute of Technology, 
Cambridge, Massachusetts 02139. 
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2. Equations of the model 
The model envisaged is that of a homogeneous fluid in a container with large 

horizontal dimensions and with a narrow vertical slit in one vertical wall through 
which the jet enters the container, placed on a rotating table with a vertical 
axis of rotation. The top and the bottom of the container are taken to be rigid 
and all the vertical walls with the exception of that containing the slit are taken 
to be porous so as to allow the jet to entrain or eject fluid without producing 
secondary circulations. 

The origin of the co-ordinate system is taken to be the centre of the line of 
intersection of the slit and the horizontal bottom plane, the y axis is taken to 
be along this line and the x axis normal to it on the bottom plane and along the 
direction of flow of the incoming jet. The z axis is taken to be vertical and 
therefore coincident with the axis of rotation. 

The pressure is assumed to be hydrostatic and only steady flows are considered. 
The equations for the conservation of momentum and mass are given in the 
usual notation as 

uuz + VUV + wu, - 2Rv = - (pz/po) + vV%, 

uv, + VVV + wv, + 2Ru = - (pu/po) + V V Z V ,  

P, = 0, 
u,+v,+w, = 0. 

Here R is the rate of rotation of the table and the pressure is that due to the 
relative motion of the fluid, 

The boundary conditions are of no slip andno normal flow at the top and bottom, 
viz 

together with the conditions that the flow a t  the axis of the jet be along the 
axis and that the downstream velocity u and its derivatives uv, uyy vanish at 
large y : 

u = v = w = 0, = O,H, 

v(y = 0) = 0, 

u = uy = uyy = 0 at y = +a. 

The equations are now non-dimensionalized. The scales in the y and z directions 
can be taken as the slit width Yo and the total height H of the container. There 
is no externally imposed downstream scale and hence x is scaled by X,, which is 
unknown at this stage but will be determined as the scale of the dominant dis- 
sipation in 3 3.1. The velocity field is scaled using the velocity at  the slit along 
the axis ( U ,  lJYJXo, U H / X o ) ,  so that no parameters appear in the equation of 
continuity. Non-dimensionalizing the pressure by the geostrophic scale po 2Q UY, 
the set of equations becomes 

€[uu,+vu,+wuz]-v = -ps+ (E/6)uzz+ ( ~ / S ) ( U y Y + 6 2 U Z , ) ,  (2.1) 
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S2€[uvX + VV, + WV,] + u = -pu + ESvZz + CT&(V,, + S2vZ,), 
0 = Pz, 

us+v,+wz = 0, 
where 

E = U/ZSZ&, E = v /2QH2,  u = ~/2 !2Y& S = Yo/Xo. 

The boundary conditions are 

u = v = w = 0, 2 = 0,1, 

v(y= 0) = 0, 

u = U ,  = u,, = 0 at y = +ao. 
The flow is assumed to be quasi-geostrophic so that 

E ,  6, u/S, E*/S < 1. 

The flow will be in the form of a jet if 6 is small. 
The condition E*/8 < 1 together with the hydrostatic equation (2.3) implies 

that vertical shear will be confined to Ekman layers near the top and bottom. 
If the local Rossby number u/2Qy < 1, the conventional linear Ekman theory 
applies. Furthermore, it has been shown that jet-like solutions to the above 
set of equations can be obtained only if the scale Xo is such that u/S 2 6. Hence 
in the interior, away from the Ekman layers, the velocity and pressure field are 
expanded in powers of the Rossby number e.  We have, for example, 

u = u0+su,-l- .... 
The equations for the zeroth order are 

vo =Pow (2.9) 

uo = -Po,’ 

0 = Pom 

(2.10) 

(2.11) 

UO, + vol/ + woz = 0. (2.12) 

Combining equations (2.9), (2.10) and (2.12) with the condition (2 .6 )  for the 
vertical velocity, 

The conditions of no normal flow at the top and bottom are satisfied by the 
interior solution. The Ekman layers are required to satisfy the conditions (2.6) 
on the horizontal components of the velocity. The equations for the Ekman layers 
are 

8 0  = Po, - UOBZZ, 

uo = -PO, + ESvO,,. 

It can be shown that the magnitudes of the two components uo and v0 become 
comparable in the Ekman layers giving 

wo = 0. 

w.f = uo + e-g [ - uo cos 5 - 6vo sin 51, 
27-2 
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uf = uo + e-5 [ - uo cos 5 + ( uo/S) sin 51, 

5 = 2/(2E)h, 1 - 2/(2E)h near 2 = 0 ,1  respectively. 

The net effect of the Ekman layers on the interior flow is a vertical velocity at  
the edge produced by the divergence in the layer. This velocity can be obtained 
by integration of the equation of continuity across the layer (Robinson 1965, 
pp. 513-15) as 

Since u and u are independent of z in the interior, (2.4) implies 

w(2 = 1,O) = 5 (l/S) (E/2)h (uoy - S2vo,). 

w,, = 0. 

w = - (l /S) (E/2)t (uoy - S2vo,) (1 - 22). Hence 

The vertical velocity produced by the Ekman layers is of order (EB/S) (i.e. < 1 
and a.ppears in the first-order equations, which are 

uouox + vouoy - Vl = - Plx + (a/€&) uoyy + o ( m  
u1 = -ply+ @a2), 
0 = PIZ, 

uls+vly+ ((2E)4/S€)uo, = O(S2). 

The vorticity equation is 

(uouo, + v0uoy)y = (W) uoyyy - ((2-W/W %ly. 

This can be integrated once to give 

u~uol:+u~uoy = ( ~ / 8 € ) U o y y -  ((2E)8/6€)UO. (2.13) 

The arbitrary function of x arising from the integration is Seen to be zero on 
account of the boundary conditions (2.8). The basic equations of the jet are 
(2.9), (2.10) and (2.13). Since we will deal only with these equations in what 
follows, the subscript zero will be dropped. 

3. Discussion of the governing equations 
3.1. Determination of the downstream scale 

Consider the vorticity equation (2.13) with the geostrophic equations (2.9) and 
(2.10): 

uux + uuy = - Ru + auyy, (3.1) 

u = -py, (3.2) 

where 

v = Pz, 

R = (2E)+/€S = 2Y0(Qv)4/ST;rH, 

a = V/ES = v/SUYo, 

R/a = ( 2 E ) h / ~  = [2Yi/v] (Qv/H2)h = Yi/(v x spin-up time). 

(3.5) 

(3.6) 
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There are two mechanisms of dissipation of vorticity on the right-hand side of 
(3.1). The first term arises from dissipation in the Ekman layers near the top and 
bottom and will be referred to as bottom friction in what follows. The second term 
represents lateral dissipation which will also be called side friction. The ratio of 
the two terms, +,is known in any experimental situation in termsof the rotation 
rate, slit width and the total height of the container (3.6) and is seen to increase 
with increasing rotation rate Q. This ratio R/a is in fact the ratio of the time 
corresponding to the lateral diffusion over one slit width and the spin-up time 
and measures the relative efficiencies of the two mechanisms of dissipation. 
Each of these mechanisms gives a characteristic downstream scale which is the 
product of the velocity U and the characteristic dissipation time, the scale 
corresponding to the more efficient process being the shorter of the two. The 
downstream scale X, of the jet, therefore, has to be that corresponding to the 
dominant dissipation. In other words, the parameter S is determined so as to 
make the dominant frictional term of the same order as the inertial terms. 

If the rotation rate is slow so that R < a we have from (3.5) 

S = v/UY, = 1/Re; X, = OYUv. ( 3 . 6 ~ )  

Thus in this case the downstream scale is given as the product of the slit width 
and the Reynolds number at  the slit, Re. Note that the set of equations (3.1)-(3.3) 
reduce to those governing the structure of jets in non-rotating systems. The 
only effects of rotation, in this case, have been to make the flow two-dimensional 
(Taylor-Proudman theorem) and to produce a pressure field which is different 
from the non-rotating case. 

On the other hand, if bottom friction dominates lateral friction we have, from 

(3.4), 6 = 2Y0(Qv)*/UH; x, = UH/2(QV)*. (3.6b) 

It is interesting that the downstream scale X ,  is in this case independent of 
the slit width. 

If both side friction and bottom friction are comparable in magnitude all the 
terms in the vorticity equation are important and the two expressions for 6 
obtained above become equal and give the same downstream scale. 

So far we have taken the cross-stream scale Y,  to be the width of the slit. This 
was done so as to ensure the knowledge of the ratio R/a and hence the dynamics 
of the particular jet obtained in a given experiment. However, the width of 
the side-frictional jet is known to increase with distance downstream of the 
slit. Hence, if the ratio R/a were based upon the local width of the jet, it would 
increase with increasing x for this jet. The variation of the two dissipation 
mechanisms with distance from the slit can be studied by using in the cross- 
stream direction an internal scale F defined by 

R/a = 1,  i.e. P = vH/2(Qv)*. 

The ratio of the local width of the jet and the scale P there determines whether 
bottom or side friction is dominant. Note that, for this choice of the cross-stream 
scale, the downstream scales (3.6a, b)  coincide. 

If the width of the slit is smaller than F, the dynamics near the slit is that of 
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a side frictional jet. As the distance from the slit increases, the local width in- 
creases, bottom friction becomes more important and finally dominates lateral 
dissipation at large distances from the slit. On the other hand, if the slit width 
is larger than H, bottom friction dominates side friction near the slit. If, in 
addition, the width of this bottom frictional jet increases with x, lateral dis- 
sipation becomes even less important as the distance from the slit increases. 
Thus, whereas bottom friction always dominates at sufficiently large distances 
from the slit, side friction is important near the slit only when the slit is narrower 
than H. In  what follows, the statement Rlais small (large) is, therefore, equivalent 
to the statement that the point under consideration is at a sufficiently small 
(large) distance from a narrow slit. The transition from a Schliehting jet to a 
bottom frictional jet is discussed in fj 5.1. 

3.2. Some general characteristics of jets in a rotating system 

Before obtaining solutions of the equations (3.1)-(3.3) for various values of the 
ratio R/a ,  it is worthwhile to consider some general properties of jet-like solutions 
of (3.1). 

A t  the axis of the jet (y = 0) the cross-stream velocity w vanishes, (2.16). 
If a: =t= 0, then u(x,  y) has a proper maximum at y = 0, 

uu(y= 0) = 0, uvu(y = 0) < 0. 

Hence for all R and a, from equation (3.1) a t  y = 0 we have 

UJO) < 0. (3.7) 

Since y = 0 is a streamline and the pressure is the stream function, we can take 

p ( y  = 0) = 0. 

The total transport in the x direction is 

.=Irn u d y = -  Sm p,dy = p ( x , y  = -Co)-p(x,y = +a). 
- W  -m 

Here p(y= 
the total transport T is in the positive x direction we must have 

co) are the values of the pressure at the two edges of the jet. If 

p ( y =  -03) > 0, p ( y =  +a) < 0. (3.8) 

Note that (3.8) does not rule out counter-currents. To determine the nature of 
the solution near the two edges of the jet one can linearize about the pressure 
at  the edges, 

Substitution in (3.1)-(3.3) yields, upon neglecting the non-linear terms, 

Hence 

where 7c at the two edges is given as 
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When side friction dominates bottom friction, there is only one root, 

R < a  N 1 ,  k z V (  +co)/a. 

Similarly, when bottom friction is dominant, 

a Q R N 1, k z - R / V (  +a). 

423 

Thus the velocity u will decay exponentially at  the two edges y = f 00 only if 

(3 .9 )  

This implies that the bottom-frictional jet ejects fluid a t  both sides of the jet 
while the side-frictional jet entrains fluid at the edges. For the side-frictional 
jet, vorticity is conserved, but diffuses laterally. To counteract this diffusion, 
inflow is required. For the bottom-frictional jet, on the other hand, vorticity 
is decaying but not diffusing. To maintain it on the edges of the jet, outward 
advection is required. The total transport T increases in the former and decreases 
in the latter case, as can be seen from 

m 

-p,dy = V (  - co) - V (  + co). 

If both lateral friction and bottom friction are equally important, exponentially 
decaying solutions exist for both ejecting and entraining jets. 

The momentum across the jet at any given x is 
m 

J = [ u2dy.  

If a solution of (3.1)-(3.3) satisfies the boundary conditions for large y (2 .8 ) ,  
it can be shown by integration of equation (3 .1 )  that J satisfies 

(3 .10)  

Thus if the rate of rotation is slow so that R Q a the downstream momentum 
flux across the jet remains the same for all x, whereas for the cases R - a, R 9 a 
the momentum is dissipated in the Ekman layers and decreases with downstream 
distance. 

4. Similarity solutions 
In  this problem the downstream scale is not imposed externally. This suggests 

the existence of similarity solutions, i.e. solutions in which the scale of the 
velocity at  the axis and the width of the jet depend only upon the distance from 
the slit. Assumption of a similar form reduces the two-dimensional problem 
(3.1)-(3.3) to one dimension and yields a solution which is independent of the 
details of the velocity profile at the inlet. The existence of a unique similarity 
solution suggests that an arbitrary velocity profile at the slit will go over into 
this similar profile at some distance downstream. For the case R = 0 which 
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corresponds to a jet in a non-rotating system, it has been shown experimentally 
by Sat0 & Sakao (1964) that the parabolic velocity profile a t  the slit changes over 
to the similar profile obtained by Schlichting within a distance less than five 
slit widths from the slit. Thus it seems reasonable to investigate similarity 
solutions of the equations (3.1)-(3.3) also for the cases R / E  B 1, R N a. 

4.1. Schlichting’s solution 

The similar profile for the side-frictional jet was obtained by Bickley (1937) 
and Schlichting (1933). We recapitulate briefly Schlichting’s (1968, p. 744) trea,t- 
ment. Assuming a similar pressure distribution of the form 

P =f(x)F(7),  7 = Y g ( 4 ,  
equations (3.1)-(3.3) for the case R = 0 yield 

(f‘g +fg’) F’2 - gf’PP” = - Eg2-F”. (4.2) 

(4.3) 

If the functionsf@) and g(s)  are chosen so that (4.2) for P has coefficients which 
depend only on 7 they are given as 

The boundary conditions are 

P(0)  = F”(0)  = 0, F’( f 00) = F”( f co) = 0. 

The equation (4.2) thus provides only one relation between the exponents 1 
and m. Any solution of (4.2) which satisfies the boundary conditions for large 7 
(4.3) must satisfy the constraint on momentum flux J implied by (3.10) for 
the case R = 0, 

f-m 

Substitution of (4.1) and (4.4) into (4.6) gives another relation between I and m 
thereby determining them, 

21+m = 0. 

(4.7) 1 = 1  m = - 2  Hence 3, 3‘ 

The sign of the constant b is determined by using (3.7), 

u,(y = 0 )  = ~ b(z+ m, u(y = 0) < 0. 
u+bx 

Thus b > 0. 

Substitution of (4.1), (4.4) and (4.7) in (4.2) gives 

Fr2 + FP” = (3a/b) P”. (4.8) 

Integrating and choosing the constants so that the width and the velocity com- 
ponent along the axis a t  the slit are unity, we get 

(4.91 I p = - (1 + 6ax)i tanh [y( 1 + 6ccx)-3], 

u = ( 1  + 6ax)-* sech2 [y( 1 + 6ax)-%], 
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V(Y = CO) = F 2 4  1 + B ~ x ) - % , \  

1 -  

0 :  

1 -  

00 

T = u d y  = 2(1+6ax)) .  
-03 

p =  -0.6 

p =  - 0 2  

I I I I L- 

0-4 0.6 0.8 X 

p = 0.2 

p = 0.6 
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(4.10) 

The velocity at  the axis of the jet decreases with the downstream distance x 
and the transport increases with x due to entrainment of fluid at  the edges of 
the jet as shown in 0 3.2. The streamlines for this solution are shown in figure 1. 
The velocity profile, and the variation of the velocity at  the axis and the width 
withz obtained by Sat0 & Sakao (1964),in an experiment of a jet in air, are shown 
in figure 2. 

FIGURE 1. Streamlines for the side-frictional jet (R = 0) .  

4.2. Bottom-frictional jet 
We investigate similarity solutions of equations (3.1) to (3.3) for the case OL. = 0, 
i.e. when bottom friction is dominant. Substitution of the similar form (4.1) in 

( f ' g  + f g ' )  PI2 - gf%F" = RF', (4.11) 
the equations yields 

with F(O) = 0, P'( ~ C O )  = 0. 

As in the previous case, if f ( x )  and g(z) are chosen so that the equation for P 
has coefficients that depend only on 7 they have to be of the form (4.4) with one 
relation between the exponents I and m given as 

Z+m = 1. (4.12) 
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The equation (3.10) cannot, however, be used in this case to determine I and m, 
because it is satisfied for all 1 and m satisfying (4.12). In  order to restrict the 
allowable values of 1, i.e. the values of I which will give acceptable solutions, we 
have to consider the other general properties of bottom-frictional jets discussed 
in $3.2.  The pressure in this case is given as 

p(x ,  y) = (a  + bx)”(y(a + bx)l-Z). 

V/U(y=O) 

XlYo XIYO 
FIGURE 2. (a) Plot of U / U ( y = O )  versus y/b, where b is the half-width, and the theoretical 
solution (4.9). 0, x = 1 mm; 0, x = 2 mm; A, x = 5 mm; A,  2 = 10 mm. ( 6 )  Downstream 
variation of central velocity. 0 ,  U,, = 88 cm/a; U, U,, = 117 cm/s; A, U,, = 173 cm/s; 
0, U,, = 313 ernis; x , U,, = 770 cm/s. (c) Downstream variation of the half-breadth 
(after Sato & Sakao 1964). 

Hence u = - (a + bx) F’(y), ( 4 . 1 3 ~ )  

V(V= ~ C O )  = bZ(a+bz)’-lP(T= +a), (4.13b) 

~,(q = 0) = b/(a+ bx) U(V = 0). 

Using the conditions (3.7) at the axis, and the conditions (3.8) and (3.9) at large q, 
we get 

b < 0 ;  l > O .  
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The equation for F is 

Since F’(0) = R/b 
F” - ZFF“ = ( R / b )  F’. 

~ ( 7  = 0)  = ( - (aR/b) - Rx). 

(4.14) 

We may set b = -R without loss of generality. The equation (4.14) can be 
integrated once to yield, in terms of an arbitrary constant K, 

F’ = - 1 +KE”’/l, (4.15) 

i.e. 

I n  general 

If we demand that F“ and all higher derivatives of F remain finite at the axis 
where F vanishes, Z has to be the reciprocal of an integer. Also, it is evident from 
the equation (4.15) that F”, F” and higher derivatives vanish with F’ which 
must occur st the two edges of the jet. The values of F at these points at which 
E”‘, F”, etc. vanish are proportional to the asymptotic pressure at the two edges 

F1IZ = 1/K. (4.16) and are given as 

For the downstream velocity to vanishat bothedges of the jet, theequation (4.16) 
must have at least two roots, the difference between the roots being the total 
transport in the x direction. This implies that 1/Z has to be an even number. If 
the constant K is chosen so that the total transport on each side of the jet is 
unity a t  the slit, the acceptable solutions of the bottom-frictional jet are 

F‘ = - 1 +P”. (4.17) 

These are illustrated in figure 3 for various values of n. The area under each curve 
is the momentum J for a fixed transport at a given x and is seen to decrease as n 
increases. Thus, we have a whole set of acceptable similarity solutions for the 
bottom-frictional jet. Further analysis will identify one amongst this set as the 
solution which will be obtained in an experiment. 

It is interesting to note in passing that Rossby’s (1951) conjecture that the 
profile of a jet should be that corresponding to the minimum momentum for a 
given transport, based on the observation that jets occur in the atmosphere 
wherever momentum losses are incurred through friction, would suggest that 
the profile with n = 1 is the ‘ correct ’ profile. 

4.3. Similarity solution for the general case 
When both side friction and bottom friction are important, substitution of th  
similar pressure distribution (4.1) gives the equation governing F, 

( f ’g  + fg’) -f’gFF“ = RF‘ - ag2F“. (4.18) 

Again choosingf(x) and g(x) so that the equation for F contains no functions of x 
we get (4.4) and two relations between the exponents I and m, 

Z+m = 1, 1-m = 1. 

Hence 1=1,  m = 0 ,  (4.19) 
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p = (a - bx) F ( y ) ,  b > 0. (4.20) 

In this case 1 and rn are completely determined by (4.18) because of the extra 
term appearing on the right-hand side. The similar form is seen to be rather 
special in that the x and y dependence is separable. The equation and the boundary 
conditions for F are 

F‘2 - FJ”’ = - (R/b) F’ + (a/b) F”, (4.21) 

(4.22) 

(4.23) 

P(0) = F”(0) = 0, 

F‘( *a) = P”( *co) = 0. 

F 

FIGURE 3. Phase plane representation of the similarity solutions for the bottom-frictional 
case (a = 0). Plot of P‘( = - U )  versus P for P‘ = - I +FI’l. 

Note that (4.21) does not reduce to (4.8) for the side-frictional jet in the limit 
of vanishing R. Since it was shown in $4.2 that the solutions of the form (4.4) 
for the case R = 0 can satisfy the boundary conditions only if the exponents I 
and m satisfy (4.7), it is clear that solutions of (4.21) with R = 0 will not satisfy 
the boundary conditions. Thus we do not expect any jetlike solutions of (4.21) 
to (4.23) for small R. 

Solutions of (4.21) with R and a of comparable magnitude cannot be obtained 
analytically. Numerical investigation is facilitated by conversion of the problem 
with boundary conditions (4.22) and (4.23) at y = 0 and co to one with all 
boundary conditions at y = 0. The unknown condition F’(0) is then varied and 
the behaviour of the solution observed in the search for a solution which satisfies 
the condition (4.23) a t  infinity. This was done with the help of an analog com- 
puter for (4.8) for Schlichting’s jet and for (4.21). In  the former case a unique 
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solution satisfying the boundary conditions for large 71 was obtained but the 
search in the latter case showed that no solutions satisfying the boundary con- 
ditions existed. The unique solution obtained for the former case implies that 
it is highly improbable that the non-existence of solutions in the latter case was 
due to computational errors. 

The remaining case R 9 a was then investigated. The equation (4.21) for the 
case a = 0 yields a solution of the form 

(4.24) 

This solution has a discontinuity in F”(O), i.e. in uy corresponding to a cusp in 
the velocity profile, which has to be removed by lateral dissipation. The boundary- 
layer nature of (4.21) for small a suggests the possibility of a boundary layer 
near the axis capable of removing the cusp. Substitution of the boundary-layer 
velocity of the form 

F‘ = - 1 + acG(y/a‘), 

which is chosen so as to ensure that P” is the same order in the boundary layer 
and the exterior, yields 

c = +, 6 = y/a?t; 

GG,, = G, G,,, - Ggs + O(at). 

This equation can be integrated to give 

This solution is clearly unacceptable. Thus the discontinuity in P“ cannot be 
removed by a boundary layer near the axis and we may conclude that there are 
no solutions of the form (4.20) for the general case R 4 0, a f 0 which satisfy 
the boundary conditions for large y. We may emphasize that (4.21) implied by 
the form (4.20) does not reduce to that governing the unique similarity solution 
for the side-frictional case. 

5. Solution for the general case and the resolution of the non-uniqueness 

The analysis so far has shown that, when the particular similarity form (4.1) 
and (4 .4 )  is assumed, there is a unique solution for the side-frictional jet and a 
set of solutions for the bottom-frictional jet. The discussion at the end of Q 3.1 
showed that, if the ratio R/a is based upon the local width, it  increases with 
downstream distance for a Schlichting jet, implying thereby a transition of the 
Schlichting jet to a bottom-frictional jet at some distance from the slit. This 
suggests that the solution for the general case R + 0,  a + 0 will be a continuous 
function of the parameters R and a which reduces to the known Schlichting 
solution at R = 0,  and yields one of the set of solutions (4.15) for the bottom 
frictional jet in the limit of vanishing a. In  this section, such a solution is found 

of similar solutions for the bottom-frictional jet 
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by applying the von Mises transformation (Goldstein 1960, 5 9.3) in which the 
pressure p is used as one of the independent variables. Substitution of 

P v  = H(P9 4 
in the equations (3.1)-(3.3) gives 

H, = R-a(H;+HH,,). (5.1) 

All the similarity solutions for the bottom-frictional jet (4.15) can be expressed 

(5.2) 
in these co-ordinates as 

Schlichting's solution for the side-frictional jet is 

(5.3) 

(5.4) 

H = - (1 - Rx) +pl''. 

H = - (1 + 6a~) - )  +p2/( 1 + 6m). 

H = -#(  4 + 344 Pi. 

This suggests looking for a solution of (5.1) of the form 

Substitution of (5.4) into (5.1) shows that non-trivial solutions for $(x) and $(z) 
exist only for the casej = 2 .  For this case, the equation (5.4) can be integrated to 
give 

P = - ($(z)l$(x))&tanh [ Y ( # ( 4  $(04 
u = #(4 sech2 [Y($(4 $ ( 4 ) 4 1 .  

(5.5) 

Combining (5.1) and (5.4) withj  = 2, 

- 4' + $'p2 = R - a[67,b2p2 - 2$$]. 

Since $(x) and $(x) do not depend on p ,  

4' = - R- 2a$$, $' = - 6allr2. (5.6) 
If the arbitrary constants involved in the integration of (5.6) are chosen so that 
u(0,O) and the width of the jet a t  the slit are unity, the solutions in the three 
cases are given as 

(5.7) 

a = 0: p = -(l-Rx)9tanh[y(l-Rx)*], (5.8) 

(5.9) 

R = 0: p = - (1 + 6m)) tanh [y( 1 + 6az)f-j; 

u = (1 - Rz) sech2 (y( 1 - Rz)a) ; 

1+R/8a --) R .f 1. (5.10) 
(1 +6ax)% 8a 

x tanh [ y ( 
This solution is of the similarity form (4.1) for all the cases. Note that the scale 

and width factors are not simple polynomials of the form (4.4) for the general 
case R + 0, a + 0. The conventional method of choosing the functions f(z) and 
g(z) so as to ensure that the equation governing P(7)  has coefficients which 
depend only on 7, forces them to be of the form (4.4) and hence does not reveal 
the solution (4.10). In  this case the separation of variables is made possible by 
the simple form of F(7) despite the complexity off(x) and g(z). 

It can be seen that the solution for the general case reduces to that of the side- 
frictional jet in the limit of vanishing R. The solution in the limit of small a 
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is the similarity solution for the case n = 1 in (4.17) and is, in fact, the profile 
which has minimum momentum for a given transport. 

The cross-stream velocity at the two edges of the jet in the three casesis given as 

a =  0: V(+CO) = &R/Z(l-Rx)&; 

R = 0: V(  ~ O O )  = T2a/(1+6ax)$; 

($R + 4a) (1 + 6m)-9 k $R( 1 + 6ax) 
2[(1+ (R/Sa)) (1 + 6ax)$- (Riga) (1 + 6 ~ ) ~ ] * '  

R$O,ct=!=O: V ( + a ) = T  

The jet entrains fluid a t  its edges from the slit (x = 0) up to a distance x given by 

(1+6ax)* = &(l+(&/R)) .  

In  this region the transport increases with downstream distance. Note that 
this region extends over the entire length of the jet in the limit of vanishing R. 
For R $ 0, the jet ejects fluid beyond this point, implying a downstream decrease 
in transport. The transition between the two rhgimesis smooth and all the features 
in the region of transition are intermediate between those of the side- and bottom- 
frictional jets. The velocity at the axis of the jet decreases with x and vanishes at 

(1 + 6 0 ~ ) )  = 1 + (8a/R). 
a point given by 

At this point, the cross-stream velocity equals Ry for finite y and becomes 
indeterminate as y tends to  infinity. These features are characteristic of the 
bottom-frictional jets and can therefore be studied simply by considering the 
case a = 0. 

For the bottom-frictional jet,:the velocity at the axis of the jet decreases with x 
and vanishes a t  the point x = 1/R. In  dimensional terms this occurs a t  a distance 
of UH/Z(Qv)3 from the slit. The momentum flux in the x direction in this case 
is given by integration of (3.10) as 

J = p(1- R X ) ~ .  

Thus the jet cannot penetrate beyond the point x = 1/R, because all the 
momentum has been dissipated in the Ekman layers. This is a general property 
of the bottom-frictional jet and holds for the whole class of similarity solutions, 
as can be seen from (4.13b). The cross-stream velocity at  the point x = 1/R is 
again Ry for finite y and becomes indeterminate for infinite y. This feature is 
common to all similarity solutions of this class with the exception of the case 
I = 1 as shownin (4.13b). Note that the final demise of the jet at  x = 1/R cannot 
be discussed in terms of this model because our assumption 6 g 1 is violated in 
the vicinity of this point. The behaviour of our solution in this region should 
therefore be considered merely as an indication of a trend. The streamlines for the 
bottom-frictional jet (5.7) are shown in figure 4. They may be compared to those 
of an entraining jet shown in figure 1. The velocity profile is the same in both cases. 

The vanishing of the downstream velocity u at the point x = 1/R and the be- 
haviour ofthe cross-stream velocity v at this point are two features of the strongly 
rotating case cc = 0. In  order to see if these would occur in an experiment, an 
initial-value problem in x is done in the next section. 
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FIGURE 4. Streamlines for the bottom-frictional jet, cz = 0. 

6. Initial-value problem for the bottom-frictional jet 
The equation (5.1) is a first-order equation in the downstream distance x. 

Thus, given the velocity and pressure at any x, and in particular z = 0, this can 
be integrated to yield a solution for those particular inlet conditions. This has 
been done for two inlet conditions. For the case a = 0,  (5.1) can be integrated 
to give H = Rx+h(p).  (6.1) 

(6.2) I For p(0,  y) = - tanh y, 
p J 0 ,  y) = - sech2 y = p 2  - 1, 

h(p)  = H ( p ,  0) = p2- 1. 

Upon substitution of (6.2), equation (6.1) can be integrated to give 

p = - (1 - R x ) ~  tanh (y( 1 - Rz);), 
u = (1 - Rx) sech2 (y( 1 -Ax))). 

This is identical to the similarity solution (5.8) and (5.9) for the bottom-frictional 
jet. Thus if the velocity profile is of a similar form at any x, it remains unchanged 
with distance downstream, as is expected. In  an experiment, the profile at the 
slit is not, in general, a similar profile. In  order to see how a general profile changes 
with x, consider p(0 ,  y) = - tan-l y, 

pJ0,  y) = - I/( 1 + y2) = - coszp, 

h(p)  = H ( p ,  0) = - cos2p. 
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Substitution into (6.1) and integration yields 

p = - tan-l[{( 1 - Rx)/Rx}* tanh (y{Rx( 1 - Rx)p)],  

Rx( 1 - Rx) sech2 (y{Rx( 1 - Rx))t)  
U = - % =  1 - ( 1  - Rx) sech2 (y{Rx( 1 - Rx)}t)  ’ 

( 6 . 3 ~ )  

(6 .3b )  

[R/{Rx( 1 - R Z ) } ~ ]  tanh (y{Rz( 1 - Rz)}t) + Ry(2Rx - 1) sech2;(y{Rz( 1 - Rx)}t)  
2[ 1 - (1 - Rz) sech2 (y{Rz( 1 - R x ) ) ~ ) ]  

( 6 . 3 ~ )  

V =  

It, can be seen from (6 .3b ,  c) 

U(X= 1/R) = 0, 

v(y = & oc)) = & R/2{Rx( 1 - R Z ) } t .  

Note that the above formula for ZI at y = 5 00 does not hold at z = 0 or I/R. 

0 1 2 

Y 

FIQURE 5. Plot of U / U ( y  = 0) verfius y/L for the profile with 1/( 1 + y2) as inlet condition 
a t  z = 0.1 (- - -) and a = 0.4 (---) together with the sech2 y profile. 

Thus the two features of the bottom-frictional jet at  the point of its demise 
are inherent in the physics and not artifacts due to the assumption of similar 
profiles. It is of interest to note that the profile (6 .3b)  becomes more and more 
like the similar profile (5.9) as the distance x increases. This is shown in figure 5. 
To see if the initial trend of the parabolic profile is also towards the similar 
profile, the gradient u,(z = 0 )  has been plotted against y in figure 7, for the 
three profiles 1 - y2, sech2y and I / (  1 -k y2) which are shown in figure 6. Figure 7 
indicates that initially both the profiles will tend towards the similar profile. It 
must be emphasized that this is only a plausibility argument and an experiment 
will have to be performed in order to test the results derived so far. In  designing 
the experiment, in addition to the constraints on E ,  C, E ,  8, the condition that the 
Reynolds number a t  the slit is small enough to ensure laminar flow has to be 
satisfied. Possible configurations for the two cases R $ a, 6: < R have been 
derived. 

28 F L M  47 
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FIQURE 6. Plot of three profiles 1/( 1 + y*) (- - -), sech2 y and 1 - y2 (-.-.-) against y. Arrows 
indicate the direction in which the profile will change. 

FIGURE 7. Plot of us@= 0) versus y for the three profiles of figure 6. 

7. Implications for the Gulf Stream 
In  the region east of Cape Hatteras, the Gulf Stream can be considered as a 

free jet which extends to the bottom of the ocean and remains coherent over 
distances which are much longer than its width (Fuglister 1963). If the problem 
of determining the structure of the stream is considered to be separable from 
that of determining its meandering path, some understanding about the nature 
of the stream can be gained from the present investigation. Some justification 
for a model in which the variation of the Coriolis parameter with latitude (p effect) 
is neglected, lies in the fact that the mean path of the stream in this region makes 
a small angle with the east. The major drawback of this model is then the neglect 
of baroclinicity. 

The frictional parameters for the stream can be estimated by using a quasi- 
laminar model with lateral eddy viscosity vH occurring in the parameter CT and 
a vertical eddy viscosity vv appearing in the Ekman number E .  Webster's (1.965) 
measurements of the velocity of the stream near Cape Hatteras yield a value of 
about lo6 cm2 sec-I for the magnitude of vH. In estimation of vv, we note that, 
since the upper surface of the stream is free, the no-slip condition is relevant only 
for the bottom and there is no Ekmanlayer near the top. Hence the eddy viscosity 
vy is that of the frictional layer underneath the stream and the coefficient of 
bottom friction in the vorticity equation (3.1) is now 4R. Munk, Snodgrass & 
Wimbush (1970) have measured the velocity profile of the tidal currents 
near the bottom of the Pacific. Their observations indicate a turbulent Ekman 
layer, about 8m in depth. This depth implies an equivalent eddy viscosity of 
32 cm2 sec-l. We use this value of vv in estimation of the bottom friction for the 
Gulf Stream, the reason being that first there are no measurements of the benthic 
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Ekman layer of the Gulf Stream and secondly the velocity of the tidal currents 
above the benthic Ekman layer (5cm/sec) is comparable with the observed 
bottom velocities of lOcm/sec for the Gulf Stream (Fuglister 1963). Also, since 
our analysis is restricted to homogeneous jets, the velocity scale U is taken to 
be the computed depth average of the maximum velocity at  each level from 
Fuglister’s (1963) observations, i.e. 30 cmlsec. Using, in addition, 

y0 = 100km, H = 4km, 2Q = 10-4sec-1, 

we get 8 = 0.03, v = 10-4, (E/2)4 M 10-3, R/a M 10. 

It can be seen that all the assumptions of our model are satisfied by these 
parameters. Bottom friction dominates lateral dissipation for the particular v, 
and vy chosen. This is rather gratifying since the relevance of models with 
dominant lateral dissipation for the Gulf Stream is highly questionable in light 
of Webster’s (1965) measurements of negative v,. If the stream is in fact a 
bottom-frictional jet, the downstream scale is 

sY0(2/E)# = 3000 km. 

Fuglister (1  963) interpreted the surface data as a narrow current extending for 
more than 2500 km which compares well with the downstream scale obtained. 
In  addition, one would expect the velocity at the edges of the stream to corre- 
spond to ejection of fluid and the downstream momentum flux and the trans- 
port to decrease with downstream distance. These predictions are based upon 
the general characteristics of bottom-frictional jets. 

It should be pointed out that there is one major difference between the flow 
in the experimental basin and an ocean circulation in which jets such as the 
Gulf Stream occur. In  the former, the entire flow field is produced by the jet 
itself, whereas in the latter, the fluid away from the jet is driven by other forces 
such as wind. Our method of resolving the non-uniqueness of the similarity 
solutions for the bottom-frictional jet by demanding continuity in the parameters 
R and a may be correct for the former situation, but, in the latter, the velocity 
profile would be partially determined by the imposed asymptotic flow. The 
situation would then be intermediate between the experimental free jet and the 
classical flat plate boundary layer which is completely determined by the velocity 
field away from the plate. Thus, for jets occurring in an oceanic circulation, the 
position of the axis as well as the velocity profile depend upon the driving force 
and a complete understanding of the structure requires the solution of the whole 
circulation problem. This suggests the manner in which the p,effect, which is 
crucial in determination of the circulation in regions which are away from the 
boundary layers and jets, can influence the structure of the jet by determining 
the asymptotic flow at the edges of the jet. For example, it can be shown that, 
when the imposed asymptotic velocity is the Sverdrup velocity (Sverdrup 1947, 
equation (13)) produced by a zonal wind stress whose curl is negative in the 
southern part of the basin and positive in the northern part, the jet occurs along 
the line of zero wind-stress curl. The velocity profile is given by (4.20), (4.24) and 
its width is independent of downstream distance. The above result about posi- 
tion of the jet is consistent with the results of numerical experiments of Bryan 

28-2 
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(1963) and Veronis (1966). The available wind-stress data is too sparse to allow 
a meaningful comparison fo the mean path of the Gulf Stream and the curve 
of zero wind-stress curl but they appear to  be similar in shape and location. 

I had stimulating discussions on the work presented with Professors D. J. 
Baker, N. P. Fofonoff, P. H. Stone and Dr J. R. Luyten. Professors F. P. Brether- 
ton, G. F. Carrier and A. R. Robinson read the manuscript and made valuable 
suggestions. This research was supported by the Office of Naval Research under 
Contract N0014-67-A-0298-0011 to Harvard University. 
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